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Abstract ~ After highlighting the problems associated with the conventional numerical implementations of 
Stefan problems using the enthalpy formulation, a simple development is described which leads to very 
accurate solutions. Theextension of this technique to two dimensional problems is then demonstrated using 
a straightforward explicit method. 

An implicit scheme for one dimensional problems, based upon the above development, is then described 
which can cope with any size phase change temperature range and the influence of internal heating, 
simultaneously. Finally, the utility of this scheme is demonstrated by its application to a welding problem. 

NOMENCLATURE 

specific heat ; 
liquid specific heat ; 
solid specific heat; 

enthalpy ; 
Jacobian matrix ; 
Jacobian matrix elements; 

thermal conductivity; 
liquid thermal conductivity; 
solid thermal conductivity; 
latent heat of solidification; 
fraction of element which is solid; 
temperature ; 
initial temperature of region; 
melting temperature; 
liquid temperature ; 
solid temperature; 
boundary between liquid-solid phases ; 
half phase change temperature interval; 
thermal diffusivity; 
liquid thermal diffusivity; 

solid thermal diffusivity; 
weight in finite difference scheme; 
constant ; 
relaxation factor; 
relaxation factor; 
body heating term ; 
density of region. 

1. INTRODUCTION 

HEAT flow and diffusion involving phase change 
occurs in many physical systems. Since there are 
relatively few analytical solutions [l, 2*] to these so- 
called Stefan problems a large number of numerical 
techniques have been developed [2,3], especially over 
the last 15 years. For problems involving a phase 

*This monograph [2] contains an excellent review of most 
of the relevant analytical and numerical techniques. 

t Present address Mineral Resources Research Center, 
University of Minnesota, Minneapolis, MN 55455, U.S.A. 

change at a specified temperature, the continuously 

moving phase change boundary has to be tracked 

accurately throughout a region approximated by a 
finite number of points. A great many methods have 

been developed to overcome this difficulty [2, 31, 
including moving grid points and isotherm migration. 

Recently, Goodrich [4] has published a very accurate 
method for these kinds of problems in one-dimension. 

However, to obtain reasonable results all the above 
methods require starting solutions, some of which are 

complicated [5]. 
In many industrial problems the phase change 

occurs over a temperature range rather than at a 
specified temperature. For these problems, the single 

point phase change schemes are inapplicable and none 
appear to have been published which track the upper 
and lower boundaries of the phase change region. In 
fact, problems involving phase change over a tempera- 

ture range usually employ so-called enthalpy methods 
which are based upon the method of weak solutions 

[6-91. These methods appear to have great flexibility 
and are easily extended to multi dimensional problems 

[7, lo]. Although, stable solutions may be obtained 
from enthalpy methods when the phase change takes 
place over a temperature range [6,7], this is not so if 

the range becomes relatively small or degenerates to a 
single temperature [ll]. In such cases, two non- 

physical features are introduced [ll], (i) the phase 
change boundary moves in an oscillatory fashion, and 
(ii) the temperature history of any point within the 

region contains, in addition to the physical tempera- 
ture plateau at the phase change, a number of rogue 
plateaux. 

Meyer [7] has developed an enthalpy method which 
claims to be essentially independent of the phase 
change temperature range and, thus, suitable for 
problems where the phase change occurs at a single 
temperature. Although this proved to be true for his 
example [7], it is by no means universally so [l 11. As 
such, it would appear that at the present time enthalpy 
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methods cannot be generally used for Stefan problems 
involving a phase change at a specified temperature. 
This means, of course, there is no method which is 

general enough to cope accurately with problems 
where the phase change region either degenerates to a 
single plane or grows. 

The objective of this work is to show how results 
from the basic explicit numerical implementation of 

the enthalpy method can be reinterpreted to provide, 
at least for one dimensional problems, accurate evalu- 

ations of the boundary movement and the tempera- 

ture history of any point within the region of interest. 
This interpretation is made in such a way that 

problems with phase change either at a point or across 
a temperature range can be solved with equal ease. The 
successful extension of this scheme to two-dimensions 

is also demonstrated and some factors which limit its 

application to all such problems are highlighted. 
The simple one-dimensional scheme is then used to 

provide the basis for the development of a compre- 
hensive implicit numerical scheme which requires no 

starting solution and is able to cope with any size phase 
change range plus the influence of internal heating 

sources or sinks. 

2. BACKGROUND 

2.1. The Stefan problem 
The classical problem of heat flow involving a 

change of state, is the one-dimensional freezing prob- 
lem first posed by Stefan in 1889 [l]. A material 

which can exist in two phases (liquid and solid) fills the 
half space x 2 0. For times t < 0 the material is in the 
liquid phase at a constant temperature T(x, 0) = 
T, > T,,,, where T,,, is the phase change tempera- 

ture. At time t = 0 the temperature of the surface x = 0 
is instantaneously lowered and maintained at T(0, t) 
= T, < T,,,. This will cause a layer of solid to be 
formed adjacent to the surface x = 0 and as time 
increases this layer will expand into the liquid. Assum- 
ing that the heat transfer is only due to conduction the 
problem can be described by a pair of Fourier heat 
conduction equations; one for the solid, 

(2.la) 

and the other for the liquid 

(2.lb) 

where the subscripts s and 1 refer to the solid and liquid 
phases respectively. At the phase change boundary, 
(i.e. the solid-liquid interface) the following conditions 
hold : 

T, = T,5 = T, (2.2) 

and 

where L is the latent heat released on solidification. 
Equation (2.3) is known as the Stefan condition and 
represents the heat balance across the phase change 

boundary x = X(r). The Stefan problem is to follow 
the solid/liquid interface x = X(r) as it moves through 
the liquid. The analytic solution of this one- 
dimensional Stefan freezing problem is well known 
and given by [l] 

X(t) = 2i, (ti,t)’ ’ (3.4) 

where K, = K,lp,C, and i. is a constant which may be 
evaluated from the following equation 

em’2 K, ti,f*‘[T(x,O) - T,Je *>” h 
__-_ 
erfi, K, IC:“[T,,, - T(0, t)] erfc[j_(ti,/K,)’ ’ 

iL7c’ ’ 

C.,[Tm - T(O,t)l 
(2.5) 

The temperature at any point is then 

x 
____ ! 2(K,t)r’2 I 

+ vJ,t), 

I .x < Xfti 

T= T,,, .Y = X(t) (2.6) 

1 Y > X(r). 

Throughout this work the one-dimensional freezing 
problem defined by equations (2.1))(2.3) will be used 
as the main test problem, tcgether with the data in S.1. 
units applied by Goodrich [4] : 

T,,, = 0; T(x,t) = 2: T(u.0) = 2(x 2 0); 

r(O,t) = - 4 or - 10; K,=K,=2; (2.7) 

C, = C, = 2.5 ‘10’ ; pl = p, = 1 : L = 100.lOh. 

The temperature history of a point 25cm from the 
surface is shown in Fig. 1. The characteristic “knee” as 
the temperature passes through the phase change 
point is clearly shown. 

2.2. The entkalpy method 
The class of Stefan problems for which analytic 

solutions exist is small [l, 21. Numerical schemes 
based on the equations (2.1)-(2.3) require the phase 
change boundary, x = X(t), to be accurately traced. 
This necessity renders a large proportion of the 
available numerical schemes difficult to implement. 
One way to overcome this problem is to reformulate 



Accurate solutions of moving boundary problems 

p = I kg/m3 
K=2 W/m”C 

T(x,O)=2”C 
T(O,tl=- 4°C 

541 

Time, days 

FIG. 1. Comparison of analytic [curve (a)] and entbalpy [curve (b)] solutions for the temperature history 
atz=25cm. 

the equation in terms of the enthalpy H [6-91, the sum 
of sensible and latent heats. In this case, the Stefan 
equations reduce to a single equation 

where the conductivity K and density p are functions 
of temperature and the temperature is related to the 
enthalpy via 

T= T,,,, 

1 

HIG HsCT,,, 

CT,,,<HsCT,,,+L (2.9) 

(H - L)IC, H > CT,,, + L. 

Equivalently equation (2.9) can be written as [9] 

CT 
H(T) = 

T< T,,, 

CT+ L, T> T,,,. 
(2.9a) 

The advantages of this approach are : 

(i) there are no conditions to be satisfied at x = X(t), 
the phase change boundary ; 
(ii) there is no need to accurately track the phase 
change boundary ; 
(iii) there is no need to consider the regions on either 
side of x = X(t) separately, and 
(iv) it is easy to introduce a “mushy” region, i.e. where 
the phase change occurs over a temperature range 
rather than at a single point. 

The explicit finite difference representation of en- 
thalpy formulation is very straightforward [8, 93 

Hi” = Hi + Eq(TitI - 2Tj + T;_,) 
P 

(2.10) 

which when combined with equation (2.9) provides a 
simple algorithm to calculate the temperature history 

of a one-dimensional region. Further, the condition 
needed to ensure convergence is simply 

&L<E 
2K’ 

The test problem described in Section 2.1 has been 
solved using the above approach. When 6t = 3600s 
and 6x = 12Scm, the predicted temperature history 
for x = 25 cm is shown as curve (b) in Fig. 1. Clearly 
the results of this method are inaccurate. The reason 
for the behaviour in the predicted temperature history 
curves has been fully examined elsewhere [ll]. 

In many physical problems the phase change takes 
place over a temperature range rather than at a single 
value. In this case the enthalpy H(t) of equation (2.9a) 
is replaced by a smoath continuous function [6] or a 
piecewise continuous function [7], e.g. 

CT 

H(T) = H(T,,, - E) + L(T- T,,, + E)/~E 

I 

TIT,,,-E 

T,,, - E < T< T, f E (2.11) 

H(T, + E) + C(T- T,,, - E) 

T,,,+&IT 

where E is the half temperature range of phase change. 
It has been shown [ 111 that when H(t) is defined in this 
way smooth (i.e. non-oscillatory) temperatures his- 
tories will only be predicted when at least two nodal 
temperatures lie in the phase change range at all time 
steps. As such, the efficacy of the scheme is critically 
dependent upon the size of E for any problem. This 
conclusion is in direct conflict with Meyer’s [7] 
assertion that this scheme is essentially independent 
of E. 
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3. A NEW INTERPRETATION OF 
THE ENTHALPY METHOD 

3.1. lnterpretution of the enthulpy 
Comparing the two curves in Fig. I it may be 

at time level j + 1, Hi > CT,,, + L/2 and 77:’ L .-. 
CT,,, + L/2 (for a freezing problem) the phase 
change boundary has passed through the point i&v in 
the preceding time interval ht. Furthermore, assuming 
that the enthalpy changes linearly in any time interval 
the time at which the phase change is on the point i&x 
(i.e. when 77, = LIZ + t’T,). is given by 

observed that the curve predicted by the explicit 
scheme of the enthalpy method oscillates about the 
true solution. If the points of agreement of these two 
curves could be predicted, then an accurate algorithm 
for the classical Stefan problem may be devised. As a 
first step towards obtaining such an algorithm, the 
enthalpy in a discretized region, which is being frozen, 
needs to be interpreted. Let i be a node point in such a 
discretized region and let e, be the eIement associated 
with that node point. The total heat in the element ei at 
any time is approximated as 77,&u where H, is the 
nodal enthalpy and 6x is the length of the element (cf. 
Fig. 2). If at time t the freezing front is in element ei and 
moving towards element e,+t the total heat in the 
element may be approximated as the sum of the heat in 
the solid and liquid parts of the elements, that is 

H&x = jC’T,S + (CT, + L)(l - S))Ss (3.1) 

where S is the fraction of the element which is solid. 
when the freezing front reaches the node i then S = :, 
Ti = T, and equation (3.1) yields 

H, = CT, -f L:,2, (3.2) 

Hence whenever the nodal enthalpy NC, in a discretized 
region, is the sum of the sensible heat of the phase 
change and half the latent heat associated with the 
phase change, the phase change boundary should be 
approximately on the node i. In essence any element 
can be thought of as a bucket of “volume” L which is 
filled (thawing) or emptied (freezing) as the phase 
change boundary moves through it. 

3.2. A new Q~gorithnt 
From the interpretation of the enthalpy given 

above, the following algorithm for solution of Stefan 
problems is proposed. The enthalpy and a “working” 
temperature is calculated at each time step from the 
expticit finite difference scheme (2.10) and equation 
(2.9). 

Whenever the enthalpy at a node point is such that 

ti = (j t Xiijr !l..\l 

where X < 1 is estimated via linear interpolation. in 
time, viz. 

At time ti the temperature at node i is ‘f’,,,. The 
temperature at the other node points are easily 
estimated by using a linear interpolation i.e. 

Tjtx = X(Ti” - 7-i) + T. ** (k # i). (3.5) 

In a case where the thermal properties differ between 
the solid and liquid the algorithm is modified by using 
the following finite difference scheme 

--’ K, , I( 7.: - 7-i+. , )) (3.6) 

in place of equation (2.10). 
The test problem (2.7) has been solved with T(O,t) 

ZZ - 10°C using an x-step of 12.5 cm and a time step of 
I h. Figure 3(a) compares the analytic movement ofthe 
boundary X(t) with that predicted by the algorithm. 
over 1200 time steps. Away from the freezing plane 
x = 0 the relative error between the predicted and 
analytic results is of order 0.1 “(,. This error is com- 
patible with the error found in a typical finite difference 
solution of a heat conduction problem involving no 
phase change. The predicted temperature history for 
x = 50 cm is compared with the analytic history in Fig. 
3(b). The predicted history is never more than 0.1’ C 
away from the true history. Similar results are shown 
for a problem with differing thermal properties be- 
tween the solid and the liquid phases, in Figs. 4(a) and 
4(b). Once again the predicted results are accurate. 
Hence the results given by the explicit finite difference 

--s 6x--, 
Solid 

I 

Y 

Liquid 

Fro. 2. The element ei. 
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&(K!F) + t(q) = Pg (3.7) 

combined with equation (2.9). The “working” tem- 
perature for the algorithm may be calculated by the 
explicit finite difference scheme 

where i., = &/(&x)‘, A, = &/(hy)’ and R = k/PC. In a 
freezing problem the phase change boundary is placed 
at the grid point (i, k) in the usual way [equations (3.3) 
and (3.4)] whenever Hi.:’ < L/2 + CT,,, where 
Hi,k > L/2 + CT,,,. The current method employed to 
find the temperature history of a point 0 is of an ad-hoc 
nature and is outlined below. The phase change front is 
plotted along a line parallel to one of the coordinate 
directions and whenever the phase change falls on a 
node on this line the temperature at point 0 is noted. 

The two-dimensional enthalpy algorithm has been 

lb) -8 , I I I I 

0 IO 20 30 40 50 

Time, days 

FIG. 3. Comparison of analytic and explicit enthalpy so- 
lutions for phase change at a single temperature with constant 
thermal properties, showing (a) the movement of the boun- 
dary, with time and (b) the temperature history at 50cm. 

scheme [equations (2.10) and (3.6)] may be rein- 
terpreted to give accurate solutions for freez- 
ing-thawing problems in one-dimension. 

Furihermore, smooth predictions may also be made 
of the movement of the liquidus and solidus boun- 
daries for problems where the phase change occurs 
over a temperature range. The test problem was run 
using a phase change temperature range of 1°C and the 
movement of the boundaries is plotted in Fig. 5. Notice 
that the 0°C isotherm is nearest to the -5°C isotherm 
and is to be expected since the heat flow rates are 
steeper on the solid side of the phase change for the last 
problem. 

3.3. A two-dimensional problem 
With modifications to the above scheme accurate 

predictions for movement of the freezing plane in some 
two-dimensional problems can be made. One such 
problem is examined below. 

In two-dimensions the enthalpy formulation for a 
problem with constant thermal properties becomes 

HMT 24 3 - M 

B 
a (a) , I I I I 

0 IO 20 30 40 50 

Time, days 

2 

I - Analytic 

-7 

-8 
(b) , I I I I 

0 IO 20 30 40 50 

Time, days 

FIG. 4. Comparison of analytic and explicit enthalpy so- 
lutions for phase change at a single temperature with non- 
constant thermal properties showing (a) the movement of the 
boundary, with time and (b) the temperature history at 50 cm. 
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FE. 5. Movement of mushy region with time. 

used to solve a problem similar to that treated by 
Crowley [lo] involving freezing in a square channel. 
However, it should be noted that the initial tempera- 
ture in this problem is greater than the phase change 
temperature. In the problem devised by Crowley [lo] 
the initial temperature was assumed equal to the phase 
change temperature, a feature which considerably 
simplifies the numerical problems Cl 11. An infinitely 
long square channel is filled with liquid at 2°C. At time 
r = 0 the temperature on the walls of the channel is 
lowered and held fixed at - 10°C. The cross sectional 
area of the channel is 1 m2 and the thermal properties 
of the liquid are as in the test problem. The predictions 
of the two-dimensional algorithm with 6x = 6y = 
1Ocm and St = 1 h are illustrated in Fig. 6. The 
progression of the freezing point with time is shown in 
Fig. 6(a) whilst Fig. 6(b) plots the movement of the X- 
coordinate of the freezing front. From Fig. 6(b) it is 
observed that the rate of advance of the freezing front 
increases near the centre of the channel, when there is 
less liquid to freeze. The predicted temperature history 
of the grid point (1, 3) [i.e. point 0 in Fig. 5(a)] is 
plotted in Fig. 6(c) and exhibits the features expected in 
a temperature history. This temperature history is 
found by following the freezing front along the line x 
= 6x. 

4. AN IMPLICFI’ ALGORITHM 

4.1. The basis of an implicit algnrithm 
The draw back to the algorithms outlined in Section 

3 is that the position of the freezing front and the 
temperature of a grid point can only be calculated at 
specific time steps. In this section an algorithm is 
described that calculates the freezing front at every 
time step. The objective of the algorithm is to choose a 
time step 6t such that the phase change boundary 
moves one and only one grid point for each choice of 
ht, i.e. force the phase change boundary to move from 

node to node on successive time steps. 
The method of choosing a time step has also been 

used in conjunction with the ful1 Stefan formulation 
for one phase problems by Douglas and Gallie [12]. 
Using this approach (i) the position of the phase 
change will be known at each time step, and (ii) the 
nodal temperature distribution will be correct at each 
time step. With these constraints problems which 
include temperature dependent function, e.g. body 
heating terms, can be solved. In order to satisfy the 
above constraints an implicit scheme for the solution 
ofthe enthalpy equation is required. In the next section 
the general form of the explicit scheme devised by 
Longworth [13] is outlined. 

4.2. An irnp~jc~t screw for solution of the e~t~~~~ 
equations [ 131 

When equation (2.9) is written as 

T= F*(H) (4.1 j 

a finite difference representation of the enthalpy 
equation (2.8) is 

Hj+ ’ = Hj i- &(l - f?)F(Hj) + &tF(H’+ i) (4.2) 

where 0 < 0 < 1, H is a vector whose components are 
the nodal enthalpies H, and F is a non-linear function 
with ith component 

F,(H) = K/(@x~)[F*(H,_ 1) - 2F*(Hi) + F*(Hi+ I)]. 
(4.3) 

If 0 > * then equation (4.2) is unconditionally valid 
[14] and defined an implicit scheme for solution of the 
enthalpy equation. When 6 = ) then equation (4.2) is 
the Crank-Nicolson type scheme proposed by Long- 
worth [13], this is the scheme used in this paper. 

As equation (4.2) is non-linear an iterative method is 
required to solve for Hj+ r and when 0 = *a non-linear 
successive over relaxation method may be used [13, 
151. An initial estimate for Hj4 ’ is given by 
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Distance, cm Time, h 

20 40 60 80 

FIG. 6. Resufts of tw~imensio~al problem, showing: (a) movement of the freezing front with time, (b) 
movement of the freezing front along the x-axis and (cc) the temperature history of point 0 (x = 10, y = 30). 

Hb+ 1 = Hj + StF(Hj). (4.4) 

This is improved upon by a sequence of corrections 
(4.8) 

with components [13] where #(T) is a body heating term. The finite difference 

(elnh = 
o(H’ + ~tF(H”) - Hi ’ + ~atF(H~ ‘)~i approximation of equation (4.8) is as before, i.e. 

(1 - Jid equation (4.3) except that 

(4.5) FdW = KlWx2) * CF*(Hi- I) - 2F*(HJ 

where w is the relaxation factor, the mth estimate of the 
enthalpy at time level (j + 1) is + F*(Hi+ 111 + t rb[F*fHi)l 

Ill-1 
Hj+” = H$+r + c ci, (4.6) where m 

i=O 

(4.9) 

and J is the Jacobian matrix with componentsgiven by 
HIC 

f 
H < C(7'm- E) 

J, _ & aFi 
IL- 2 aH, HzH~*" 

f47) F*(H) = [H + L/242-, - e)]/(C + L/24 

C(T,,, - E)< H=s C(T,,, -I- E)+ L (4.10) 
A more detailed description of the above method can 
be found in reference 13. 1 (H - NC 

In a physical problem the region of interest may 
I H > C(T,,, + E)+L 

contain body heating and if the material contains 
impurities the phase change may take place over a which is the inverse of equation (2.11) and E is half the 

temperature range. In such an example, the enthalpy phase change range. With the equations (4.9) and 

equation becomes [S] (4.10) the solution may proceed as above. 
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4.3. The ulgorithm 
The essential feature of the algorithm proposed 

above (Section 4.1) is to ensure that at each time step 
one and only one nodal enthalpy takes the value 
(CT, -t L/2). 

The algorithm is implemented in the following way. 
Assuming that at time t the phase change boundary is 
at node k, an initial guess for the time step at, is 

at:) = at,- ,. (4.1 t ) 

The enthalpy distribution H ‘+*I: is found on solution 
of equations (4.4)-(4.7) where the mth time step is 
calculated from an iterative scheme e.g. 

&km+ 1 = &k” + i!P(&” - at?) 

(4.12) 

where w* is the relaxation factor. When Hi=i;2; has 
converged to L/2 + CT, the temperature distribution 
is found from equation (4.1 f. 

The test freezing problems have been solved using 
the above methods with T(O,r) =- -. 10X and 6s 
-7~ 12.5 cm. The results for the problem with constant 
thermal properties are shown in Fig. 7. 

The predicted position of the boundary is always 
within 0.5 cm of the analytic position whilst the 

predicted temperature history of x = SO cm is accurate 
within 0.1 C. Similar results have been obtained for the 
problem with differing thermal properties across the 
phase change, cf. Fig. 8. Hence the implicit node 
jumping solution of the Stefan problem is stable and 
accurate. Furthermore only 8 time steps are used to 
move the phase change 1 m (t -: 36 days). In the 

explicit algorithm Section 3 around 1000 time steps 
would have been required, whilst the method derived 
by Goodrich [4] uses 36 time steps. 

4.4. .4 welding problem 
The spot welding problem examined by Atthey [S], 

can be slightly modified to include all the features 
hi~hljghted above that are associated with physical 
problems, i.e. body heating and phase change range. 

(a) j 
4 

0 \ 0 Analytic 

G 
J - . * l Numerical 

5 

‘\ 

solution 
+ 
0 d -2.. 

E 

c” 

(b) 
-6 - 

I I I I I I 
4 8 I? 16 20 24 28 32 36 

Ttme, days 

FIG. 7. Comparison of analytic and implicit enthalpy solutions for phase change at a single temperature with 
constant thermal properties. showing (a) the movement of the boundary with time and (b) the temperature at 

Wcm. 
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-6 
tbf , I I I I I I I 

4 8 12 I6 20 24 28 30 

Time, days 

FIG. 8. Comparison of analytic and implicit enthalpy solutions for phase change at single point with non- 
constant thermal properties showing (a) the movement of the boundary with time and (b) the temperature at 

x = 50cm. 

Two large plates of steel of thickness 1 (2.2 x lop3 m) 
are contained between x = 0 and x = 21. At time t = 0 
a body heating term defined by the piecewise con- 
tinuous function 

@T) = 

(19T/48 + 50)10* T< 800 

[(T- 800)/M + 1100/3] 108 T> 800 

P/m31 (4.13) 

is introduced between x = 0 and 21. By symmetry only 
the top plate need be considered. This plate is subject 
to the conditions 

dT/dx = 0 at x=I 

dT/dx = T/2 at x=0 (4.14) 

T=O at t = 0. 

The thermal properties of steel may be summarised 
as specific heat C = 620 J/kg “C conductivity K = 
24 W/m “C, density p = 7800 kg/m3 latent heat of 
melt L = 271. lo3 J/kg melt-temperature T,,, = 
1530°C and melt range 2~ = 20°C. The chosen melt 
range is quite typical for steel. From equation (4.14) it 
is clear that melting will begin at x = 1 where the plates 
join and move outwards to x = 0. The presence of the 

body heating term and the melt range of the steel will 
mean that at any time an area of the plate will be 
undergoing melting rather than a point. This area of 
melting is referred to as the ‘mushy’ region and is 
bounded by a solidus and liquidus boundary. This 
welding problem is essentialfy described by equations 
(4.8) and (4.10) and may be solved by the method 
outlined above i.e. the phase change isotherm T = T,,, 
is forced to move 6x for each choice of the time step 6t. 
The extent of the ‘mushy’ region at any time will be of 
interest. This cafi be found by an interpolation on the 
temperature distribution, e.g. the position of solidus 
boundary at time t = j&t can be calculated from 

Solidus = [S + (T’, - T,,,+,)/(T& - T&+,)]Gx (4.15) 

where S is the last node in the solid between x = 0 and 
x = 1. 

The spot welding problem outlined above has been 
solved with 6x = 10m4 m and whilst H(1, t) 6 
C(T,,, - E) (i.e. the steel is all solid) a fixed time step 
of 6t = 2 x lo-’ S. After melting commenced the 
extent of the mushy region at each time step was found 
on use of the linear interpolation equation (4.15). This 
result is shown in Fig. 9. The movement of both the 
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FIG. 9. The welding problem showing (a) the extent of the mushy region as the melting front moves towards 
x = 0 and (b) the temperature histories at points x = 0.5, 1, 1.5, 2 x 10m3 m. 

solidus and liquidus boundaries is very rapid near to 
x = 1 and the mushy region is large (>> 6x). However, as 
the melting advances towards x = 0 the solidus and 
Iiquidus boundaries converge and the extent of the 
‘mushy’ region becomes very small (CC 6x). During this 
phase of the problem the melt range almost de- 
generates to phase change at a single point. Even 
though this significant change in the size of the melt 
range takes place the only sign of instability is in the 
predicted movement of the solidus boundary where 
some slight oscillations occur. 

However, even these osciIlations may be ascribed to 
the crude linear interpolation used to position the 
solidus boundary. The predicted temperature histories 
at various depths, shown in Fig. 9, have no oscillations. 
The interesting feature in these results is that the 
characteristic “knee” in the temperature histories does 
not occur at the phase change temperature for the 
nodes near to x = 0. The flattening of the history 
curves appears to take place when the extent of the 
“mushy” region is large, this suggests that the “mushy” 
region acts as a heat “block” utilizing ail the heat being 
created to undergo the phase change. 

5. CONCLUSION 

A simple extension to the explicit finite difference 
solution to the enthalpy formulation has been de- 
scribed which provides accurate solutions to Stefan 
problems, whether the phase change occurs at a 
specific temperature or across a range. The non- 
physical features usually associated with enthalpy 
methods are eliminated, the resulting aigorithm is 
extremely simple to implement and solutions with a 
relative accuracy of 0.1% have been obtained. 

The explicit algorithm has been extended to two 
dimensional regions and a problem solved which 
produces stable, physically reasonable results which 
compare well with those of other authors [ 10, 12, 161. 

The principle used in the simple one-dimensional 
method has also been expIoited to develop an implicit 
algorithm which is both accurate and fast. For ex- 
ample, it took only eight time steps to trace the phase 
change boundary 1 m, compared to 1000 using the 
expiicit method and 36 by Goodrich’s method. Fur- 
thermore, this implicit method is capabIe ofproducing 
stable solutions to problems where the phase change 
region varies from a point to a temperature range 
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during its solution and internal heating both occur 
simultaneously. This flexibility is demonstrated in 
solving a welding problem similar to that originally 
posed by Atthey [S]. 

Finally, by carefully reinterpreting the numerical 
results from the standard enthalpy method powerful 
numerical tools have been developed to solve complex 
Stefan problems. The main advantages of the modified 
explicit enthalpy method and the implicit “node 
jumping” scheme may be summarized as : (i) simple in 
concept and easy to program, (ii) no starting solution 
required, (iii) accurately tracks the phase change 
boundary and the temperature history curves at any 
point, (iv) copes easily with non-constant thermal 
properties, (v) deals with problems involving any size 
phase change temperature range (including a single 
point) and body heating, simultaneously, and (vi) 
extends easily to multi-dimensional problems. 
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SOLUTIONS PRECISES DES PROBLEMES DE FRONTIERE MOBILE EN UTILISANT LA 
METHODE DE L’ENTHALPIE 

Resume - Apres avoir examine les problemes associb aux developpement numeriques des problemes de 
Stefan utilisant la formulation enthalpique, on de&t un d~velop~ment simple qui conduit a des solutions 
t&s precises. L’extension de cette technique H deux problemes dimensionnels utilise une methode explicite 
directe. 

Un scheme implicite pour des problemes a une dimension base sur le developpement precedent est ensuite 
d&it qui peut concerner simultanement une ttendue quelconque de temperature de changement de phase et 
l’influence dun chauffage interne. Finalement, l’utilitt de c-e scheme est demontre par son application a un 

probleme de soudure. 

GENAUE LGSUNGEN VON PROBLEMEN MIT BEWEGLICHEN RANDBEDINGUNGEN 
UNTER VERWENDUNG DER ENTHALPIEMETHODE 

Znsammenfassung-Nach der Beschriebung von Problemen, die mit den gewohnlichen numerischen 
~handlungen von Stefan-Problems bei Gebrauch der Enthalpieformulierung verbunden sind, wird eine 
einfache Methode beschrieben, die zu sehr genauen Liisungen fiihrt. Die Erweiterung dieser Technik auf 
zweidimensionale Probleme wird anschlieBend an einer direkten expliziten Methode demonstriert. 
Weiterhin wird ein implizites Verfahren fiir eindimensionale Probleme auf der gleichen Grundlage 
beschrieben. Es kann jeden Temperaturbereich beim Phasenwechsel und gleichzeitig den Einflug von 
inneren Warmequellen beschreiben. SchlieBlich wird die Brauchbarkeit dieses Verfahrens bei der Anwen- 

dung auf ein Problem der SchweiBtechnik gezeigt. 
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MCnOJIb30BAHME METOAA 3HTAJlbJlMfi fiJlR TOYHOI-0 PEIBEHMR 3AAAY 
C ~EPEMEWAIoJJMMMC~ I-PAHRlJAMM 

AHHOTa~HR-~AaH0630pnpO6neM,CB~3aHHbIXc 06bl'lHbIMH YAcJIeHHbIMW pWIeHBRMB 3aAa'! cTe+aHa 

Ha 0ctioBe 3manbnetiHbrx @0p~yAEip0~0~,H npemoXesa npocTaR MeTomiKa. n03Bonmoqax nonyyarb 

TO',Hble peLLIeHH%L PaCnpOCTpaHeHHe npeAJIOxeHHOii TeXHBKA "a AByMepHbIe 3aAa'la AeMOHCTpHpy- 

eTcfl c 5icnonb308aiwiebi npRMor0 11~H0r0 MeTona. 3aTeh4 npaeenerio omcawie HemHoE cxekfbl filn 

OAHOMepHbIX 3aAaY. KoTopan nomonse? nonyraTb peuIeHsa nnr n1o6oro AHana30Ha TeMnepaTyp 

(pa3oBbIx npespametinl npe 0nHoepeMemoM neticTBwi BHYT~~HH~X I~CTOVHWK~B Tenna. HaKOHeu, 

nOKa3aHa npHMeHAMOCTb CXeMbI K npo6neMaM CBapKFi. 


